Enhancing the Compatibility of Poly (1,4-butylene adipate) and Phenoxy Resin in Blends

نویسندگان

  • Cheng-Fu Yang
  • Hsiang-Ching Wang
  • Chean-Cheng Su
چکیده

This work concerns the enhancement in the compatibility of blends of poly (1,4-butylene adipate) (PBA) with poly (hydroxy ether of bisphenol-A) (phenoxy) via alcoholytic exchange. Results on the thermal behavior and morphology show that the blended PBA/phenoxy system exhibits a homogeneous phase and a composition-dependent glass transition temperature (Tg). The interaction parameter (χ12) of PBA/phenoxy blends was calculated using the melting point depression method and was found to be -0.336. However, the compatibilization of PBA/phenoxy blends can be enhanced by chemical exchange reactions between PBA and phenoxy upon annealing. Annealed PBA/phenoxy blends were found to have a homogeneous phase with a higher Tg than that of the blended samples, and a smooth surface topography that could be improved by annealing at high temperature. The results of this investigation demonstrate that promotional phase compatibilization in the PBA/phenoxy blend can only be obtained upon thermal annealing, thus causing transreactions to occur between the dangling -OH of the phenoxy and the ester functional groups in PBA. Extensive transreactions cause alcoholytic exchange between the PBA and phenoxy to form a network, thus reducing the mobility of the polymer chain. Finally, the crystallinity of PBA decreased as the degree of transreaction in the blends increased.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Starch-based biodegradable blends: morphology and interface properties

In order to improve the properties of plasticized wheat starch (PWS) and to conserve its final biodegradability, PWS can be blended with biodegradable polyesters [polyesteramide, poly(ε-caprolactone), poly(lactic acid), poly(butylene succinate adipate) and poly(butylene adipate terephthalate)] which exhibit variable polar characteristics. This paper is focused on the analysis of the compatibili...

متن کامل

Miscibility, Morphology and Crystallization Behavior of Poly(Butylene Succinate-co-Butylene Adipate)/Poly(Vinyl Phenol)/Poly(l-Lactic Acid) Blends

Amorphous poly(vinyl phenol) (PVPh) is introduced into poly(butylene succinate-cobutylene adipate)/poly(L-lactic acid) (PBSA/PLLA) blends via solution casting. Fourier transform infrared spectroscopy (FTIR) analysis verifies that intermolecular hydrogen bonding formed in PBSA/PVPh/PLLA blends. The miscibility between PBSA and PLLA is improved with PVPh incorporation as evidenced by approaching ...

متن کامل

Effect of Chain-Extenders on the Properties and Hydrolytic Degradation Behavior of the Poly(lactide)/Poly(butylene adipate-co-terephthalate) Blends

Biodegradable poly(lactide)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blends were prepared by reactive blending in the presence of chain-extenders. Two chain-extenders with multi-epoxy groups were studied. The effect of chain-extenders on the morphology, mechanical properties, thermal behavior, and hydrolytic degradation of the blends was investigated. The compatibility between the PLA...

متن کامل

Various crystalline morphology of poly(butylene succinate-co-butylene adipate) in its miscible blends with poly(vinylidene fluoride).

Poly(vinylidene fluoride) (PVDF) and poly(butylene succinate-co-butylene adipate) (PBSA) are crystalline/crystalline polymer blends with PVDF being the high-T(m) component and PBSA being the low-T(m) component, respectively. PVDF/PBSA blends are miscible as shown by the decrease of crystallization peak temperature and melting point temperature of each component with increasing the other compone...

متن کامل

Microbial Degradation Behavior in Seawater of Polyester Blends Containing Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx)

The microbial degradation behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and its compound with several polyesters such as poly(butylene adipate-co-telephtharate) (PBAT), poly(butylene succinate) (PBS), and polylactic acid (PLA) in seawater was tested by a biological oxygen demand (BOD) method. PHBHHx showed excellent biodegradation in seawater in this study. In addition, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017